The Scales and Equilibration of Midocean Eddies: Forced–Dissipative Flow
نویسندگان
چکیده
The statistical dynamics of midocean eddies, generated by baroclinic instability of a zonal mean flow, are studied in the context of homogeneous stratified quasigeostrophic turbulence. Existing theory for eddy scales and energies in fully developed turbulence is generalized and applied to a system with surface-intensified stratification and arbitrary zonal shear. The theory gives a scaling for the magnitude of the eddy potential vorticity flux, and its (momentum conserving) vertical structure. The theory is tested numerically by varying the magnitude and mode of the mean shear, the Coriolis gradient, and scale thickness of the stratification and found to be partially successful. It is found that the dynamics of energy in high (m . 1) baroclinic modes typically resembles the turbulent diffusion of a passive scalar, regardless of the stratification profile, although energy in the first mode does not. It is also found that surface-intensified stratification affects the baroclinicity of flow: as thermocline thickness is decreased, the (statistically equilibrated) baroclinic energy levels remain nearly constant but the statistically equilibrated level of barotropic eddy energy falls. Eddy statistics are found to be relatively insensitive to the magnitude of linear bottom drag in the small drag limit. The theory for the magnitude and structure of the eddy potential vorticity flux is tested against a 15-layer simulation using profiles of density and shear representative of those found in the mid North Atlantic; the theory shows good skill in representing the vertical structure of the flux, and so might serve as the basis for a parameterization of eddy fluxes in the midocean. Finally, baroclinic kinetic energy is found to concentrate near the deformation scale. To the degree that surface motions represent baroclinic eddy kinetic energy, the present results are consistent with the observed correlation between surface eddy scales and the first radius of deformation.
منابع مشابه
The Scales and Equilibration of Midocean Eddies: Freely Evolving Flow
Quasigeostrophic turbulence theory and numerical simulation are used to study the mechanisms determining the scale, structure, and equilibration of mesoscale ocean eddies. The present work concentrates on using freely decaying geostrophic turbulence to understand and explain the vertical and horizontal flow of energy through a stratified, horizontally homogeneous geostrophic fluid. It is found ...
متن کاملEddy Amplitudes in Baroclinic Turbulence Driven by Nonzonal Mean Flow: Shear Dispersion of Potential Vorticity
As in the midlatitude atmosphere, midocean eddies are primarily generated by baroclinically unstable mean currents. In contrast to the atmosphere, however, oceanic currents are significantly nonzonal. Even weak nonzonal currents are linearly unstable since does not suppress growing meridional waves. Theories for the nonlinear equilibration of baroclinic instability, and hence theories for the a...
متن کاملBasinwide Integrated Volume Transports in an Eddy-Filled Ocean
The temporal evolution of the strength of the Atlantic Meridional Overturning Circulation (AMOC) in the subtropical North Atlantic is affected by both remotely forced, basin-scale meridionally coherent, climaterelevant transport anomalies, such as changes in high-latitude deep water formation rates, and locally forced transport anomalies, such as eddies or Rossby waves, possibly associated with...
متن کاملEntropy generation analysis of MHD forced convective flow through a horizontal porous channel
Entropy generation due to viscous incompressible MHD forced convective dissipative fluid flow through a horizontal channel of finite depth in the existence of an inclined magnetic field and heat source effect has been examined. The governing non-linear partial differential equations for momentum, energy and entropy generation are derived and solved by using the analytical method. In addition; t...
متن کاملHalting scale and energy equilibration in two-dimensional quasigeostrophic turbulence
The halting scale of the inverse energy cascade and the partition between kinetic and potential energy are considered for the case of forced quasigeostrophic turbulence in the regime of intermediate Rossby deformation length, for which the deformation length is comparable to the energy-containing scales of the flow. Phenomenological estimates for the halting scale and equilibrated energy of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002